Enantioselective carbohydrate recognition by synthetic lectins in water.

نویسندگان

  • Pablo Ríos
  • Tiddo J Mooibroek
  • Tom S Carter
  • Christopher Williams
  • Miriam R Wilson
  • Matthew P Crump
  • Anthony P Davis
چکیده

Carbohydrate receptors with a chiral framework have been generated by combining a tetra-aminopyrene and a C3-symmetrical triamine via isophthalamide spacers bearing water-solubilising groups. These "synthetic lectins" are the first to show enantiodiscrimination in aqueous solution, binding N-acetylglucosamine (GlcNAc) with 16 : 1 enantioselectivity. They also show exceptional affinities. GlcNAc is bound with Ka up to 1280 M-1, more than twice that measured for previous synthetic lectins, and three times the value for wheat germ agglutinin, the lectin traditionally employed to bind GlcNAc in glycobiological research. Glucose is bound with Ka = 250 M-1, again higher than previous synthetic lectins. The results suggest that chirality can improve complementarity to carbohydrate substrates and may thus be advantageous in synthetic lectin design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enantioselective carbohydrate recognition by synthetic lectins in water† †Electronic supplementary information (ESI) available: Experimental details for synthesis, characterisation and binding experiments; NMR spectra and binding analyses. See DOI: 10.1039/c6sc05399h Click here for additional data file.

With N-acetyl-D-glucosamine 8....................................................................... S31 With D-glucose 9................................................................................................ S33 With methyl-β-D-glucoside 10......................................................................... S35 With L-mannose 12.......................................................

متن کامل

Molecular recognition of surface-immobilized carbohydrates by a synthetic lectin

The molecular recognition of carbohydrates and proteins mediates a wide range of physiological processes and the development of synthetic carbohydrate receptors ("synthetic lectins") constitutes a key advance in biomedical technology. In this article we report a synthetic lectin that selectively binds to carbohydrates immobilized in a molecular monolayer. Inspired by our previous work, we prepa...

متن کامل

A synthetic lectin analog for biomimetic disaccharide recognition.

Carbohydrate recognition is biologically important but intrinsically challenging, for both nature and host-guest chemists. Saccharides are complex, subtly variable, and camouflaged by hydroxyl groups that hinder discrimination between substrate and water. We have developed a rational strategy for the biomimetic recognition of carbohydrates with all-equatorial stereochemistry (beta-glucose, anal...

متن کامل

Platform Synthetic Lectins for Divalent Carbohydrate Recognition in Water

Biomimetic carbohydrate receptors ("synthetic lectins") have potential as agents for biological research and medicine. However, although effective strategies are available for "all-equatorial" carbohydrates (glucose, etc.), the recognition of other types of saccharide under natural (aqueous) conditions is less well developed. Herein we report a new approach based on a pyrene platform with polar...

متن کامل

New H-bonding patterns in biphenyl-based synthetic lectins; pyrrolediamine bridges enhance glucose-selectivity.

Synthetic lectins are molecules designed for the challenging task of biomimetic carbohydrate recognition in water. Previous work has explored a family of such systems based on bi/terphenyl units as hydrophobic surfaces and isophthalamide spacers to provide polar binding groups. Here we report a related receptor which employs a new spacer, 2,5-bis-(aminomethyl)-pyrrole, with an alternative (A-D-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical science

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2017